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STATE OF THERMAL STRESS AND STRAIN OF A PLATE WEAKENED 
BY A RECTANGULAR HOLE* 

1.1. VERBA and YU.M. KOLYANO 

By using the method of continuation of functions a solution is obtained 
for the stationary heat conduction problem and for the corresponding 
static problemofthermo-elasticity for an infinite plate weakened by a 
rectangular hole. 

1. Solution of the heat conduction problem. Let us consider a homogeneousisotropic 
unbounded plate of thickness 26 with a rectangular cutout Ix* 1 <ai (i = 1,2).Heat transfer 
from the external medium occurs by Newton's law through the surface of the cutout and the side 
surfaces x,=*6. We ensure the temperature of the medium flowing over the surfaces xg = f 
6 to be zero, while the temperature of the medium flowing over the plate rectangular boundary 
is t,. We then have the third boundary value problem for the Helmholtz equation in the domain 
external to the rectangle /l/ to determine the stationary temperature field T in the plate. 
We use the method of continuation of functions /2/ to solve this problem. To do this we 
introduce a new unknown function 8 that agrees with the desired function of the temperature 
T outside the rectangle and equals zero within, i.e., 

Taking account 
boundary conditions 
for the function 

8 = TM (Xl, x*) U.1) 
M hr ~2) = 1 - M (4 M ha), M (xi) = S, (xi + ad - 

s_ txf - ai) 

I 1, E>O 
S*(5)= 0,530,5, E=O 

(8, E<U 
of the syrmnetry of the problem relative to the coordinate axes and the 
on the rectangle contour, we obtain an equation with singular coefficients 

16, (Xi + ai) + 6 (Xi - ai)1 - T Iapzi M (&*I) x 
IS,’ (Xi + Ui) - a_’ (5% - %)I} 

hi+, x"+&, 
I 

2, i-l 
i-&l= 1 

, i=2 

(h is the thermal conductivity,a, and a1 (i = 1, 2) are heat transfer coefficients from the 
surfaces %, = fsr and 1 xi I< ai, 1 =ifl 1 = at*& 

The values of the function T on the rectangle contour that are in (1.2) are expanded in 
a Fourier series 

*Prikl.Matem.Mekhan.,51,3,468-474,1987 
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T I.ti=ai M (“‘fl) = 2 2’ cos h~*%,*liVI (&*J 
n=o 

“Lrtl 
&) _ E(n) * 

“if1 s T lxiEai cos h:*%i*t, dXi,tl 

-ai*1 

h”’ = _E_ 
0,3, n=O 

n ai ’ 
e(n) = * 1 ? n= 1,2,. . 

(1.3) 

(1.4) 

In order to ensure continuity of the solution at an angular point, we assume that the 
Fourier coefficients Cn(i) satisfy the relationship 

(1.5) 

Substituting expansion (1.3) into (1.2) and then using the Fourier integral transform in 
we obtain a solution of (1.2) the coordinates, 

ql* (q, Xi) = exp (- I zi + Ui I+ 11) f exp (- 151 - at I- 1) 
&* (q, Xi) = exp (- I Xi + Ui I+ rl) sign* (If + ai) * 

exp (- I5i - 4 I-11) sign- (5i - ai) 

sign* x = 2S* (z) - 1, ; 5 If = X sign&s, y = 1/X" + qz 

The unknown Fourier coefficients c,@) in the solution (1.6) are found from the following 
system of linear algebraic equations by using (1.4) : 

&) + $ ApOp 72 11 dip (i=1,2; k=O,l,...) 
n=o (1.7) 

The coefficients A,,('*') of system (1.7) equal the scalar product of elements of a linearly 

D(ki) = i. Af~i*l)~~*l) + Bc’, ,fEi (.q) = 1 If SXp (- z&Z& 

6.i) Ak,, =- ‘zil”,’ 1 gi (hi*“, hf*“, 7)) c l?Xp (- 2Uiy) + 

0 

independent system of functions in the space L, (0, 00) 

2 (- 1)” rl sin Vi*1 
v 

da%*1 

n ) [exp(-2u*y).+~~~,i(y)]“’ (n=OtL.) 
q3 _ (~(+*I) 2 (1.8) 

Therefore, the third boundary value problem for the Helmholtz equation in an external 
domain to a rectangle is reduced to the solution of an infinite system of linear algebraic 
equations. 

2. Foundation of the method of reduction of the solution of system (1.7); 
We shall seek the solution of system (1.7) that is convergent in the norm of the space l",i.e., 

The estimates /3, 4/ 
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(2.2) 

hold for the coefficients of system (1.7). 
We considerthe first 2m equations of system (1.7) with 2m unknowns 

m-1 
cc’ + x Api), 

n=o ” 
-D? (i=l,Z; k=O,l,.... m-l) n- 

m-1 
Q’ = x /$;~f’p) + &’ 

?I=0 

(2.3) 

System (2.3) has a unique solution. 
Indeed, since the coefficients A$$ equal the scalar product of elements of a linearly 

independent system of functions, the determinant of system (2.3) can be represented as the 
sum of one and Gram determinants from the first to m-th order. Since the system of functions 
(1.8) is linearly independent, the determinant is positive for arbitrary m. 

If the equations of system (2.3) for k=O are multiplied by 2, the matrix of the co- 
efficients for the ,$ of this system become symmetric. In addition it is positive-definite. 

It follows from the above that the theory of the solvability of infinite systems /5/ is 
applicable to system (1.7), from which this assertion follows: system (1.7) has a unique 
solution satisfying condition (2.1). The approximate solution of system (1.7) can be found 
by the method of reduction. 

3. Solution of thethermo-elasticifyproblem. Wewilldetermine the temperature 
stresses in a plate due to the temperature field (1.6). The equilibrium equations in dis- 
placements for an isotropic plate have the form /l/ 

(3.1) 

where v is Poisson's ratio, a, is the temperature coefficient of linear expansion, and A is 
the Laplace operator. 

We assume that the plate is free of external load, i.e., 

cii IX&"* = a,2 Ixi=*ai = 0, I%tl(<%kl (3.2) 

The stress tensor components Uij are connected with the displacement vector components 
(U,, &) by the Duhamel-Neumann relationships /l/. 

As in solving heat conduction problems we similarly introduce new unknown functions 

ut = %M (51, X2), Qij = OijM (XI, 52) 0, i = 1, 2) (3.3) 

Taking into account the symmetry of the problem relative to the coordinate axes and the 
boundary conditions on the contour of the rectangle (3.2), we obtain a system of differential 
equations containing delta-functions and their derivatives for V, 

The values of 
(3.4) are expanded 

2 au, 1 -v aau, --+_--- + @',*I 
l+v az; 1 +v a& 

-=2at6 - a~la~a 

1 -V %*tl 
-- 
1 +Y azifl xi=ai M(zi*t,)16+ Cxi + ui) - 6_ (Xi - %)I + 

l-v 
-q-q Ui Ixifl=ai*l M (Xi) 164 (xi+1 + ai+l) - 6-l (%I2 - 41 + 

uifl lr,=a,, [6+(5ifl + ai*l) + 6_ (xi*1 - %tl)l X 
a%==. 

[6+(ti + 4)-6S_(rt - dl ti' '* 2, 

the functions ui on the plate rectangular boundaries that are in system 
in a Fourier series 
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Substituting the expansions into system (3.4), and using the Fourier transform in the 
coordinates, we obtain the following expressions for the functions Qij(i, j= I,2 , and E is 
the elastic modulus) 

(3.5) 

*3*(~1,~i)=l~i+ai1,exp(-_~li~aiI+’l)t_ 
) JA - ai I- exp (- 1 Xi - ai 1.. ‘1) 

*\/t4* (qs ri) = (xi + ai) exp (- 1 *i + ai /+ rl) _C 
(xi - ai) exp (- 1 ri - % I_ 11) 

We find the Fourier coefficients t,(") and r,,@) in the solution of the thermo-elasticity 
problem from the infinite system of linear algebraic equations 
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(i, ifi) Qkn 

Gf;t*‘) z $ s q2g,,+ (p(ni*l), pf’, ‘ij) [(I - V) fl, i (7) + 
0 

fi. i (11) = exp (- 2airl) - srP (- 2W)9 f3 (% @I = 
qs i CM 

‘la + +(ijra 
k 

f, (rl, qi)) = t)’ - W’ 
q2+lhfjjl fLi(3 - 2aiq ew (--2Wl) 

Estimates analogous to the estimates (2.2), obtained for system (1.7), hold for CO- 
efficients of system (3.6). System (3.6) has a solution convergent in the norm of the space 
1'. The approximate solution can be obtained by the method of reduction. 

4. Behaviour of the solution of an angular point. We note that the solution of 
thethermo-elasticityproblem (3.5) can be obtained in a different form if the convolution 
theorem for the Fourier transform is used. For instance, the integral 



370 

is written, apart from a constant factor, in the form 

Integrating (4.1) twice by parts, a power-law singularitycanbe extracted that occurs at 
the angular point (al. u2) in the form 

Analogous power-law singularities are obtained at angular points when investigating the 
other components in the expression for Q,j. 

1. 

2. 
3. 

4. 
5. 

5. Results of numerical investigations. Formally 
setting a,t, = a&, = qO, a, = a2 = 0 in (1.6) and (3.5), we will obtain 
the solution of the stationary heat conduction problem and the 
corresponding staticthenno-elasticity problem for a plate with a 
rectangular cutout on whose boundaries the heat flux p0 is given. 
For this case the dimensionless temperature field e= TX/q,6 was 
computed as a function of X,=x,/6 for A,= q/6== 10, A, = a&i = 20, 

Bi = @I?~ = 0.1 and different X, = x1/6 . A 20 x 20 and 40 x 40 
matrix of the truncated system was formed in solving system 
(1.7) by the method of reduction. Results of the calculations are 
practically identical. The results of the temperature field com- 
putations are represented as graphs in the figure for X,=10; 11.25, 
12.5 (curves 1, 2, 3, respectively). It follows from the graphs 
that the maximum value of the temperature is achieved at the angular 
point. The temperature is equalized with distance from the boundary. 
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ACTION OF A UNIFORMLY VARIABLE MOVING FORCE ON A TIMOSHENKO BEAM 
ON AN ELASTIC FOUNDATION, TRANSITIONS THROUGH THE CRITICAL VELOCITIES* 

YU.D. KAPLUNOV and G.B. MURAVSKII 

The vibrations of an infinite Timoshenko-type beam on an elastic foundation 
subjected to a force whose point of application moves over the beam with 
constant acceleration are considered. Resonance effects associated with 
the transition of the velocity of motion of the load through three critical 
values characteristic for the system being considered are studied. 
Asymptotic representations are constructed for the solution of the problem 
corresponding to the load acceleration approaching zero. 
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